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Abstract
Researchers and mobile users have little visibility into the
network traffic generated by mobile devices and have poor
control over how, when, and where that traffic is sent and
handled. This paper presents Meddle, a platform that lever-
ages VPNs and software middleboxes to improve transparency
and control for Internet traffic from mobile systems. Meddle
provides a practical way to interpose on all of a device’s In-
ternet traffic, while providing clear incentives, privacy guar-
antees, and ease of deployment to end users. We discuss
the design and implementation of our system, and evaluate
its effectiveness with measurements from an IRB-approved
user measurement study. We demonstrate the potential of
this platform using case studies of applications built atop
Meddle; namely, controlling privacy leaks and detecting ISP
interference with Internet traffic.

1. INTRODUCTION
Today’s mobile systems are walled gardens inside gated

communities, i.e., locked-down operating systems running
on mobile devices that interact over networks with opaque
policies. As a result, researchers and mobile-device users
have little visibility into the network traffic generated by
their devices, and have poor control over how, when and
where that traffic is sent and handled by third parties.

This situation has negative implications for users: previ-
ous studies identified privacy [34], performance [13,19, 30],
policy [35] and security [17] issues in mobile systems. How-
ever, each of these studies is limited in terms of visibility or
control. For example, passively gathered datasets from large
mobile ISPs provide broad visibility but gives researchers no
control over network flows (e.g., to experiment with trans-
parent proxies or malware blocking). Likewise, custom An-
droid extensions provide strong control over network flows
but measurement visibility is limited to the devices running
these custom OSes or apps, often requiring warranty-voiding
“jailbreaking.”

To understand and address the above problems in mobile
systems as they evolve over time, we need an approach that
supports long-term studies of mobile Internet traffic and the
ability to interpose on these flows. Ideally, such a system
would be easy to deploy and use for a typical smartphone
user running any operating system anywhere in the world.

This paper presents Meddle: a platform for measuring and

interposing on all mobile-device Internet traffic (e.g., from
smartphones and tablets). Meddle combines software mid-
dleboxes with VPN proxying, enabling both visibility and
control over network flows.

The vast majority of Internet-enabled mobile devices pro-
vide the ability to connect to a remote host over a virtual
private network (VPN), so Meddle is readily deployable and
usable. By redirecting all smartphone traffic over a VPN,
Meddle provides a central vantage point for traffic monitor-
ing. Further, software middleboxes can provide control over
flows going to and from each device, and even experiment
with network services for mobile devices (e.g., content filter-
ing, malware blocking, Web proxying), quickly, easily and
at scale using cloud infrastructure [29]. This paper demon-
strates the feasibility of our approach and explores several
new opportunities for implementing applications not broadly
supported in today’s mobile environment.

Meddle provides useful opportunities for both users and
researchers. This paper focuses on the research Meddle en-
ables by providing in situ access to user network flows. Cur-
rently researchers with new middlebox approaches to im-
prove the mobile user experience must test them in a lab
environment or rely on ISPs or users to deploy new hard-
ware/software — a potentially risky and costly proposition.
With Meddle, researchers can immediately deploy new soft-
ware middlebox services that interact with real users’ mobile
traffic (with user opt in).

To encourage users to install Meddle, we currently pro-
vide custom network filters (e.g., device-wide ad blocking)
and identification/blocking of services leaking personally iden-
tifiable information (PII). We are developing additional ser-
vices as user incentives, including offloading network com-
munication to the cloud and device-wide SPDY proxying.

Our key contributions are as follows. First, we design and
implement Meddle, a system that provides transparency and
control over all Internet traffic generated by their mobile de-
vices. We demonstrate that it is sufficiently transparent to
avoid significantly impacting measurement results. Meddle
captures all Internet traffic with approximately 10% power
and data overheads, and low additional latency. We will
make the Meddle software and configuration details open
source and publicly available.

Second, we use Meddle to conduct measurement stud-
ies that inform a wide range of mobile middlebox applica-
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tions: identifying privacy leaks in mobile apps, detecting
content manipulation and service differentiation in ISPs, and
studying network activity of mobile malware. We analyze
network traffic from controlled experiments with more than
1,000 apps (iOS and Android), and from human subjects
during a 10-month IRB-approved study, comprising 21 users
and 26 devices. To the best of our knowledge, this is the first
study to report a holistic view of network traffic from real
user devices running iOS and Android and connecting to a
variety of cellular and Wi-Fi networks. These users inter-
act with networks in 54 ASes, 8 of which are cellular; their
traffic strongly depends on OS and network type.

Third, we implement applications atop Meddle that im-
prove privacy, block unwanted traffic from ads and malware,
and notify users of ISP interference. In particular, we make
available a new visualization tool, ReCon, for users to track
and control how they are being monitored by ad and analyt-
ics services. We also develop tools for detecting content ma-
nipulation by ISPs (Web Tripnets) and service differentiation
(Mobile Replay) in the mobile environment, building upon
previous work in these areas [14, 27]. Meddle has been run-
ning since October, 2012 as part of an IRB-approved study,
new users can sign up at http://meddle.mobi.
Roadmap. The rest of the paper is organized as follows.
We present the goals and implementation for Meddle in §2,
then evaluate it in terms of overhead and effectiveness as a
vantage point for mobile traffic in §3. We use this analysis
to inform the design and implementation of several applica-
tions built atop Meddle. In §4, we describe how we detect
and block privacy leaks in mobile traffic. §5 discusses how
we use Meddle to detect ISP interference with network traf-
fic. In §6 we discuss related work and we conclude in §7.

2. MEDDLE OVERVIEW
In this section, we present an overview of Meddle. We first

describe the goals of the system, then discuss the Meddle
architecture and implementation.

2.1 Goals
The goals of Meddle are to provide visibility into Inter-

net traffic from mobile devices, exert control over this traffic
and facilitate a large-scale deployment across multiple net-
works, OSes and devices (smartphones and tablets). We dis-
cuss each of these in turn.
Visibility. We aim to capture all of a mobile-device’s In-
ternet traffic, allowing us to characterize network flows and
interpose on them using software middleboxes. To achieve
this, we need a solution that works continuously, regardless
of the mobile OS, access technology, or apps installed.
Control. Another important goal is to facilitate research
into new middlebox applications for mobile traffic. It should
present a simple API and policy framework for researchers
and developers to block, shape, inject or otherwise modify
network flows matching various criteria. It should also sup-
port applications that operate on collections of flows over
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Figure 1: Meddle Architecture. Mobile devices (top) com-
municate with a Meddle frontend (VPN proxy, Web proxy
and/or traffic replay server). VPN proxy traffic is forwarded
to a meddlebox, which provides software middlebox services
that measure and/or interpose on network flows before relay-
ing the traffic to the Internet.

time and across users (e.g., Web caching/prefetching, mal-
ware detection/blocking and ISP characterization).
Deployability. The system must support the ability to de-
ploy and distribute large numbers of middlebox services quickly,
easily, and at scale [29] without the need to deploy hard-
ware in homes [32] or ISPs [35]. To improve the representa-
tiveness of studies using Meddle, we want to recruit average
(i.e., non-technical) users to participate. To support this, we
need a system that has incentives for users, a low barrier to
adoption, is easy to deploy and that scales gracefully.

2.2 Architecture & Implementation
To achieve our goal of visibility, Meddle uses a VPN to

direct all of a participating mobile device’s Internet traffic
to a proxy server (top of the Fig. 1, described in §2.2.1).
To achieve our goal of controlling mobile-device traffic, the
Meddle proxy directs traffic to a software middlebox, called
a meddlebox (middle of Fig. 1, described in §2.2.2), that can
record, block, modify and/or otherwise interact with mobile-
device flows. Section 2.2.3 describes how we designed Med-
dle to have clear incentives for user adoption and a low bar-
rier to entry to participate.

2.2.1 Visibility: VPN proxying
Meddle leverages the fact that the vast majority of mo-

bile devices provide native VPN support, a feature typically
provided to satisfy enterprise clients. We currently support
VPN tunnels on iOS and Android; we anticipate being able
to support the next version of Windows Phone that includes
a native VPN implementation.
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iPhone support. All iOS devices (version 3.0 and above)
support VPN On-Demand, which forces traffic for a spec-
ified set of domains to use VPN tunnels. This feature is
originally intended to allow enterprises to ensure their em-
ployees’ devices always establish a VPN connection before
contacting a specified set of domains. To ensure all possi-
ble destinations match this list, we exploit the fact that iOS
uses suffix matching to determine which connections should
be tunneled; accordingly, we specified the domain list as the
set of alphanumeric characters (a-z, 0-9, one character per
domain). To setup this configuration, users need to install a
single file, a step that needs to be performed only once.
Android support. As of Android 4.2, Android supports
“always on” VPN connections that ensure all traffic is al-
ways tunneled. For Android version 4.0+ we use a modified
StrongSwan implementation of a VPN client app that man-
ages VPN tunnels. Our version ensures re-establishment of
VPN tunnels on network state changes (e.g., when a device
switches from cellular to Wi-Fi).
Server-side implementation. Meddle uses the open-source
Strongswan project [31] to manage the VPN tunnels on its
servers. When traffic arrives at the server, Meddle uses tcp-
dump and bro to record traffic via two IRB-approved ap-
proaches. The first captures full packets, and requires sub-
jects to be interviewed and provide written informed consent
before participating. We used this study to inform the sec-
ond approach, which captures only relevant packet headers
necessary for the Meddle applications in this paper.

As we described in the previous section, encrypted flows
give Meddle no visibility into the content of network flows
and no ability to interpose on that traffic. To regain this visi-
bility, we use SSL bumping to decrypt and access the plain-
text of encrypted flows in the following way.

First, we note that Meddle’s VPN server, like all VPN
servers, can be configured to use a self-generated root cer-
tificate used to sign all subsequent certificates issued to par-
ticipating mobile devices. This allows us to perform SSL
traffic decryption using the Squid proxy’s SSL bumping [7]
feature. When the mobile device connects to a service sup-
porting SSL, the proxy masquerades as the service using
a forged certificate signed with the Meddle root certificate.
Then the proxy establishes an SSL connection with the in-
tended target, impersonating a mobile device. Using the traf-
fic captured on Meddle and the private key generated by the
squid proxy to communicate with the mobile device, we can
decrypt all SSL traffic.

This approach fails for apps that do not trust certificates
signed by unknown root authorities. For example, in our
controlled experiments we observed that Firefox prevents
SSL bumping by validating root certificates, while the Google
Chrome, Safari, Facebook, and Google+ apps, as well as the
default mail clients and advertisement services, do not check
the validity of the root certificate. This enables our approach
to provide visibility into secure channels established with a
wide range of popular apps.

2.2.2 Control: Software Middleboxes
Once traffic arrives at a meddlebox, it interacts with soft-

ware middleboxes that interpose on user-generated traffic
and proxy services that interact with untunneled flows.
Plugin infrastructure. Meddle supports a plugin infrastruc-
ture for custom flow processing. Each plugin takes as in-
put a network flow and outputs a network flow (potentially
empty). When a packet arrives at the VPN proxy, Med-
dle forwards it to a software-defined switch [6] that deter-
mines the ordered set of plugins that the corresponding flow
will traverse. This order is configured by a policy manager,
which determines the set of plugins that should operate on
each flow. After the last plugin is traversed, Meddle forwards
the network flow to the Internet. The same approach applies
to traffic from the Internet destined for Meddle subscribers.

Plugins support a variety of features such as ad blocking,
analyzing PII leakage or page speed optimization. Addition-
ally, we have implemented per-connection blocking, mal-
ware analysis and DNS-based packet filters.
Frontend services. As we describe in §5, Meddle supports
active measurements. Specifically, we inject JavaScript into
Web pages to detect if the device’s access network is mod-
ifying Web content in flight, and we use a companion app
to test detect service differentiation within mobile ISPs. To
support these, we run services on Meddle that are accessed
via untunneled connections.

2.2.3 Deployability: Incentives and ease of use
Incentives for user adoption. Meddle presents a number of
incentives that appeal to a wide range of users. Importantly,
we do not charge users for any of these services.
Improved security. By securely tunneling all of a mobile de-
vice’s traffic, users are less vulnerable to data leakage (e.g.,
via open WiFi hotspots).
Device-wide content filters. We use Meddle to block content
that users do not wish to access – for all apps running on
a device. The most popular instance of this is device-wide
ad blocking, implemented using a DNS server that returns
localhost for requests to names for known ad servers.
Privacy revelations [36]. The ReCon tool (§4) allows users
to see how they are being tracked by ad and analytic servers,
and allows them to customize the list of trackers to block.
ISP transparency. We provide services that allow users to
identify cases where ISPs are modifying HTTP content in
flight, and when they provide differentiated service to traffic
crossing their networks (§5).
Low barrier to entry. Configuring a VPN generally re-
quires filling out five fields on an Android phone, and the
VPN configuration can be distributed using a single file on
iOS. We are hosting a cloud-based deployment that is free
for users, to support large numbers of flows interacting with
researcher’s meddleboxes. We will make the Meddle soft-
ware publicly available.

For those who want to run their own Meddle instance,
the Meddle server requires only that a user can run a mod-
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ern Linux OS with root privileges. This can be deployed
in a single-machine instance on a home computer, dedicated
server or on a VM in the cloud. Meddle is currently in private
beta with dedicated-server, EC2 and Aliyun deployments in
the US, France and China.

2.3 Discussion
Limitations. The following can impact Meddle’s coverage.
Trust. This paper focuses on a cloud-based Meddle deploy-
ment, which requires that users trust our system with their
network data. We will make our code open source to build
this trust. For particularly paranoid users, we will also pro-
vide a stand-alone implementation that users can run on a
server of their choice.
At most one VPN tunnel. Currently iOS and Android support
exactly one VPN connection at a time. This allows Meddle
to measure traffic over either Wi-Fi or cellular interfaces, but
not both at once. The vast majority of traffic uses only one of
these interfaces, and VPNs can be used to tunnel that traffic.
Proxy location. When traffic traverses Meddle, destinations
will see the Meddle address, not the device IP, as the source.
This might impact services that customize (or block access
to) content according to IP address (e.g., in case of localiza-
tion). A solution to this problem is to use a Meddle instance
with an appropriate IP address.
ISP support. Some ISPs block VPN traffic, which prevents
access to our current Meddle implementation. We note that
few ISPs block VPN traffic, and there is an incentive not
to block VPN traffic to support enterprise clients. We also
note that China blocks VPN access to all but domestic des-
tinations; thus, we use a Chinese cloud host (Aliyun) to run
Meddle in China.
IPv6. Meddle cannot be currently used on networks using
IPv6; though iOS, Android and StrongSwan support IPv6
the mobile OSes currently do not support IPv6 traffic through
VPN tunnels.
Privacy. Our IRB-approved user study reports data from
capturing all of a subject’s Internet traffic, which raises sig-
nificant privacy concerns. The study protocol entails in-
formed consent from subjects who are interviewed in our
lab, where the risks and benefits of our study are clearly ex-
plained. The incentive to use Meddle is Amazon.com gift
certificates awarded by lottery. To protect the identity of
information leaked in the data, we use public key cryptog-
raphy to encrypt all data before storing them on disk; the
private key is maintained on separate secure severs and with
access limited to approved researchers. Further, subjects are
free to delete their data and disable monitoring at any time.
Per the terms of our IRB, we cannot make this data publicly
available due to privacy concerns.

Our other IRB-approved Meddle study uses the same pro-
tocol except for (1) only packet headers are captured, thus re-
ducing the privacy risks, and (2) subjects provide electronic
informed consent, thus facilitating user adoption worldwide.
Subjects can sign up at http://meddle.mobi.

Generalizability. A system for improving visibility and
control over Internet traffic from mobile devices can be im-
plemented at the endpoints (e.g., in the OS), in the network
(e.g., a hardware middlebox), somewhere else in the middle
(our approach). Meddle is not intended as a blanket replace-
ment for these alternative approaches; rather it allows us to
explore the opportunities for improving the state of the art
in today’s mobile systems by making mobile Internet traffic
available to researchers.

In some cases, Meddle is the right location to implement
new services that could be costly to deploy on devices (prefetch-
ing) or impractical to deploy in network (detecting ISP ser-
vice differentiation). In other cases, Meddle provides a prac-
tical partial solution to a problem where the complete solu-
tion has an impractical cost. For example, identifying pri-
vacy leaks from mobile devices is reliably addressed using
information flow analysis [17]. However, due to the over-
heads of this approach it is difficult to deploy to users and
at scale. Meddle allows us to identify and block unobfus-
cated PII in network flows from arbitrary devices without
requiring OS modifications or taint tracking. Regardless of
the ultimate optimal solution, we can use Meddle today to
inform the design and deployment of future functionality in
OSes and for in-network devices.

3. EVALUATION
This section evaluates Meddle in terms of overhead, vis-

ibility into network traffic and the ability to map network
traffic to the apps that generated it. We use the results in this
section to inform the applications we build in §4 and §5.

3.1 Methodology
Using Meddle, we collected full packet traces from Inter-

net activity generated by mobile devices. We use this data
to study how to map monitored traffic to applications, and to
analyze PII leakage. Below, we describe our data-collection
methodology, which consists of 1) controlled experiments in
a lab setting and 2) IRB-approved “in the wild” measure-
ments gathered from real users during seven months.

3.1.1 Controlled Experiments with Apps
Our goal with controlled experiments is 1) to obtain ground

truth information about network flows generated by apps and
devices, and 2) characterize the network activity for a large
variety of apps in a lab setting. We use this data to under-
stand how to model apps’ network behavior, how to map
network flows to the app that generated them and how to
identify PII in those network flows.
Device setup. We conducted our controlled experiments us-
ing two Android devices (running Android 4.0 and 4.2) and
an iPhone running iOS 6. We start each set of controlled ex-
periments with a factory reset of the device to ensure that
software installed by previous experiments cannot impact
the network traffic generated by each device. Then we con-
nect the device to Meddle and begin the experiment.
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SSL bumping. We use SSL bumping only in controlled ex-
periments where no user traffic is intercepted. We are also
designing a study for IRB approval in which users can opt in
to use SSL bumping for obfuscating PIIs in their SSL traffic.
Manual tests. We manually test the 100 most popular free
Android apps in the Google Play store and 209 iOS apps
from the iOS App store on April 4, 2013. For each app, we
install it, enter user credentials if relevant, interact with it for
up to 10 minutes, and uninstall it. This allows us to char-
acterize real user interactions with popular apps in a con-
trolled environment. We enter unique and distinguishable
user credentials when interacting with apps to easily extract
the corresponding PII from network flows (if they are not ob-
fuscated). We use the same technique to test malware apps
(§4.3).
Automated tests. The second set of controlled experiments
consist of fully-automated experiments on 732 Android apps
from a free, third-party Android market, AppsApk.com [2].
We perform this test because Android users can install Third-
party apps without rooting their device.

Our goal is to understand how these apps differ from those
in the standard Google Play store, as they are not subject
to Google Play restrictions. We automate experiments us-
ing adb to install each app, connect the device to the Meddle
platform, and start the app. Then we use Monkey [9], an app-
scripting tool, to perform a series of approximately 100,000
actions that include random swipes, touches, and text en-
tries. Finally, we use adb to uninstall the app and reboot the
device to forcibly end any lingering connections. This set of
experiments is limited to Android devices because iOS does
not provide equivalent scripting functionality.

3.1.2 In Situ Study
The controlled experiments in the previous section pro-

vide us with ground-truth information for a large number
of apps running in a controlled setting for a short period of
time. To understand the network behavior of devices with
real users “in the wild” over longer time periods, we con-
ducted an IRB-approved measurement study with a small set
of subjects, from Oct. 15, 2012 to Sep. 1, 2013.1

Our measurement data was collected from 26 devices: 10
iPhones, 4 iPads, 1 iPodTouch, and 11 Android phones. The
Android devices in this dataset include the Nexus, Sony,
Samsung, and Gsmart brands while the iPhone devices in-
clude one iPhone 3GS, four iPhone 5, and five iPhone 4S.
These devices belongs to 21 different users, volunteers for
our IRB approved study. This dataset, called mobUser, con-
sists of 318 days with data; the number of days for each user
varies from 5 to 315 with a median of 35 days. For privacy
reasons, the SSL-Bumping plugin is disabled for all mea-
surements involving real users.

3.2 Overheads
Network Latency. We first test indirection overhead from
1The measurement study is ongoing, we report a subset of results.

mobile networks to a Meddle instance. In the US with EC2,
delays from mobile-network egress points to EC2 nodes are
on generally less than 10 ms. For other networks, we will
achieve similarly low indirection overhead by placing in-
stances in a cloud/hosting provider near subscribers and use
DNS redirection (e.g., via Amazon’s Route 53) to direct clients
to nearby instances.

The other source of latency is connection establishment
time, incurred once per session. We measured 50 VPN-
connection establishment times on both iOS (iPhone 5 / iOS
6.1) and Android (Galaxy Nexus / Android 4.2), for Wi-Fi
and cellular connections. We conduct tests in rapid succes-
sion to ensure the radio is in the high power state. The Med-
dle server was running on a university network. For Android
(using IKEv2), the maximum establishment time was 0.81
seconds on Wi-Fi and 1.59 seconds on cellular. For iOS, the
connection is slower because it uses IKEv1: we observe a
maximum of 2 seconds on Wi-Fi and 2.18 seconds on cel-
lular. Because each VPN session supports many flows, the
amortized cost of connecting is small.
Power Consumption. Mobile devices expend additional power
to establish, maintain and encrypt data for a VPN tunnel. To
evaluate the impact on battery, we used a power meter to
measure the draw from a Galaxy Nexus running Android
4.2. We run 10-minute experiments with and without the
VPN enabled. For each experiment, we used an activity
script that included Web and map searches, Facebook in-
teraction, e-mail and video streaming. The VPN leads to
a 10% power overhead. For iOS devices, we relied on the
battery readings provided by iOS because we cannot attach
a power meter directly to the battery. We again found an ap-
proximately 10% power overhead of using VPNs when we
drained a fully charged battery while performing the opera-
tions performed during the tests for Android devices.
Traffic Volume. Meddle relies on IPsec for datagram encryp-
tion, thus there is an encapsulation overhead for each tun-
neled packet. To evaluate this overhead, we use 30 days of
data from 25 devices that to compare encapsulated and raw
packet sizes. We observe a maximum encapsulation over-
head of 12.8% (average approximately 10%). For users that
have limited data plans and consume most of their quota per
month, this can have a significant impact. We note that this is
partially offset by Meddle services such as content filtering
and connection blocking.
Scalability. We currently use Amazon EC2 to support users
at our cost. Without exploring opportunities for economies
of scale, we estimate that it will cost less than a penny ($0.0084)
per user per day. At this cost, we can support up to 10,000
users with research funds. If Meddle were to become ex-
traordinarily popular, it would cost each user approximately
a quarter per month to pay their own way. By comparison,
data plans in the US tend to cost $30-$90 per month – more
than two orders of magnitude larger.

3.3 Meddle Visiblity
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We now use data gathered from users to motivate the need
for a platform like Meddle that provides a comprehensive
view of Internet traffic from mobile devices. Note that due
to the relatively small number of users in our study, we do
not attempt to draw strong and generalizable conclusions.
Observation 1: End-host instrumentation provides a more
complete view of Internet traffic from mobile devices. We
infer the access technology (WiFi or cellular) for each ses-
sion using WHOIS data for each IP address used by a mobile
device. Based on this classification, the mobUser dataset
consists of traffic from 65 distinct ASes, of which 8 are cel-
lular ASes and 7 are university networks.

We observe less diversity in cellular ASes compared to
Wi-Fi ASes. During the measurement study, each device
connected to our Meddle server from at most two distinct
cellular ASes. In contrast, a median of 4 Wi-Fi ASes were
observed per device and for one device we observed traffic
from 36 different Wi-Fi ASes spread across 5 countries. In
terms of traffic volumes, collectively our users with cellu-
lar connectivity transferred 24-56% of their traffic over cel-
lular and the remainder over WiFi. The key take-away is
that, for the users in the mobUser dataset, we would miss a
large fraction of traffic generated by the mobile devices by
instrumenting a single cellular carrier or WiFi access point.
Meddle does not have this limitation.
Observation 2: Meddle provides visibility into a wide range
of traffic patterns. We use the classification provided by
Bro [25] to categorize flows as either TCP, UDP, or other,
along with subcategories HTTP, SSL and DNS. Table 1 sum-
marizes the traffic generated by user devices in our study.

There are three key take-aways from this table. First, Web
and SSL traffic dominate the traffic for users in the mobUser
dataset; 91.26% (137.63 GB) of the traffic volume in the
mobUser dataset is either HTTP or SSL. Second, there is sig-
nificant diversity in the usage patterns for users with Android
and iOS devices; the fraction of total flows over cellular or
Wi-Fi differ significantly for each OS. Third, a platform that
cannot analyze SSL traffic will miss a large fraction of the
traffic. A significant fraction of flows use SSL, which pre-
vents classification using deep packet inspection. This mo-
tivates the need for a platform that not only covers multiple
OSes and multiple access technologies but is also capable of
intercepting all mobile Internet traffic, including SSL traffic,
for the purpose of analysis and interposition.

3.4 Mapping Network Flows to Apps
Mapping network flows to apps is an important step for

determining the origins of potentially costly network traffic,
and for identifying which apps are responsible for privacy
leaks. The following sections show that previous approaches
to mapping passively gathered traffic fail to identify apps
responsible for that traffic most of the time and that Meddle
facilitates a first look at determining which apps generate
traffic over SSL connections.

Table 1 suggests that apps, OS services, and libraries often

IP Service Android iOS
Protocol Cell. Wi-Fi Cell. Wi-Fi

TCP
HTTP (%) 44.83 68.23 60.07 76.92
SSL (%) 44.74 20.89 36.19 14.11
other (%) 8.26 10.10 2.74 1.33

UDP DNS (%) 1.31 0.58 0.64 0.38
other (%) 0.54 0.11 0.31 7.24

Other other (%) 0.32 0.09 0.05 0.02
total (%) 100.00 100.00 100.00 100.00

Traffic Volume (GB) 9.57 21.10 16.61 103.52
# Flows 927660 761735 730209 2796130

Table 1: Traffic volume (in percentage) of popular pro-
tocols and services on Android and iOS devices over cel-
lular and Wi-Fi. TCP flows are responsible for more than
90% of traffic volume. Traffic share of SSL over cellular net-
works is more than twice the traffic share of SSL over Wi-Fi.

OS Store Apps Gen. Host User- Combi-

HTTP App. Org. Agent nation
iOS Apple 209 176 83

(47.1%)
119
(67.6%)

149
(84.6%)

157
(89.2%)

And. Google 100 92 41
(44.5%)

54
(58.6%)

21
(22.8%)

59
(64.1%)

And. Other 732 365 17
(4.6%)

79
(21.6%)

52
(14.2%)

83
(22.7%)

Table 2: Classification of apps based on Host and User-
Agent. Most iOS apps use dedicated User-Agent strings
to fetch data over HTTP. A combination of User-Agent and
Host identifies the majority of Android and iOS apps.

rely on HTTP and SSL to exchange data. In the following
analysis, we focus on identifying the apps, OS services, and
other services responsible for these HTTP and SSL flows.
We use ground-truth data from controlled experiments to
show that the previous approach for classification fails for
most popular apps; we then develop techniques to improve
this mapping and apply it to our mobUser dataset.

3.4.1 Improving HTTP Traffic Classification
In Meddle, we need to know which app is responsible for

Internet traffic using only network flow information. This
section shows how to use User-Agent and Host fields to iden-
tify the apps and services responsible for HTTP flows. Pre-
vious work [22, 37] is insufficient – they use HTTP header
fields to identify the category of corresponding apps, not the
specific app.
Controlled experiments. In Table 2 we present results from
our classification study using controlled experiments. To the
best of our knowledge, we are the first to attempt to use
ground-truth information to evaluate the effectiveness of app
classification using only header data.

Classifying with Host: First, we note that 176 of the 209
iOS apps we manually tested generated HTTP traffic. Col-
umn 5 of Tab. 2 shows that the Host field uniquely identified
the corresponding app for 47% of the iOS apps. Each app
generated multiple flows, some of which did not contain the
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app signature in the Host field, e.g., when contacting ad sites
or CDNs. Such flows comprised 2% to 85% of the traffic
volume from the iOS apps used during our measurements.
The Host field also can identify the provider that released an
app. For example, we observed the name Zynga in the Host
field when using Farmville, an app created by Zynga. When
testing an app, we noted down the name of its creator as the
organization, and we searched this name in the Host field in
the HTTP flows generated by this app. In column 6 of Ta-
ble 2, we see that classification by organization is effective
for 67% of iOS apps.

We observe similar results for flows from apps in Google
Play. However, for the apps from the Third-party store we
observe that the Host field is less effective. Primarily this is
due to the fact that a majority of the apps we tested (about
77%) were stand-alone services such as games. These apps
contacted advertisement or CDN sites that do not uniquely
identify the app. Along with the organizations of the apps
we tested, we used the Google Play API [4] to extract the
names of the creators (organizations) for the 5000 most pop-
ular Android apps on the Google Play store.

Classifying with User-Agent: We observed a non-empty
User-Agent string in more than 99.7% of the HTTP flows
from iOS and 90.9%flows from Android. A User-Agent
string may contain an app identifier and other auxiliary in-
formation such as details of the OS. For example, Yahoo
Mail’s User-Agent string contains the string YahooMobile-
Mail/1.0. However, some apps use more generic User-Agent
strings such as AppleCoreMedia (streaming video on iOS)
or Dalvik (generic text for Android). To extract the app in-
formation, we use regular expressions to filter the auxiliary
information from the User-Agent and cluster the extracted
tokens using the edit distance.

Table 2 shows that 84.6% of the 176 iOS apps generating
HTTP traffic were correctly identified by their User-Agent,
which we verified by manual inspection. In contrast, the
User-Agent was useful in identifying only 23% of the An-
droid apps generating HTTP traffic, meaning previous tech-
niques depending solely on the User-Agent will fail [22,37].
For the 27 iOS apps which we failed to identify, we observed
signatures for OS services and libraries. Similarly, the ma-
jority of Android HTTP traffic contained flows with the de-
fault User-Agent (e.g., Dalvik).

Combination of User-Agent and Host: In Table 2, we
observe that the User-Agent is more effective for mapping
iOS apps while the Host is more effective for Android apps;
however, neither alone is a complete solution. We therefore
rely on a combination of User-Agent and Host to classify
HTTP traffic. For our classification, we first try to classify
the HTTP flow using the User-Agent. We use the Host field
only if we were unable to extract any useful signature from
the User-Agent field. In Table 2, we observe that by using
a combination of the User-Agent and Host we were able to
identify 64% of the Android apps and 89% of the iOS apps.

In situ data. Table 3 shows that a combination of User-

Technique Category iOS Android
Bytes Flows Bytes Flows
(%) (%) (%) (%)

User-Agent Apps 43.21 85.73 15.01 75.17
OS Services∗ 0.19 3.82 17.42 0.81

User-
Agent
+

Media (Popu-
lar)

51.36 7.12 61.98 3.56

Host Media (Other) 4.90 0.85 0.68 0.12
Host Other

Apps/Web-
services

<0.01 0.49 1.53 12.98

Total Classified 99.6 98.01 96.62 92.64

Table 3: Effectiveness of mapping HTTP traffic. OS
services∗ includes services other than those used to down-
load media content.

Agent and Host field maps more than 92% of the traffic (flows
and bytes) from iOS and Android devices. Using only the
User-Agent on the mobUser dataset, we were able to iden-
tify 256 iOS and 86 Android apps, OS libraries, and services.
We observe that the User-Agent is more effective in identify-
ing iOS apps compared to Android apps, which agrees with
what we observed in controlled experiments.

Audio and video streaming apps such as Pandora and You-
Tube use the Apple Core Media and Stagefright services on
iOS and Android respectively to download media content,
and for other auxiliary content, such as list of related videos
and recommendations, these apps use the User-Agent that
contains their app signature. We therefore use a combination
of User-Agent and Host field to identify such apps.

In Table 3, we observe that media from popular streaming
services—Netflix, YouTube, Pandora, Spotify, and Vimeo—
contribute to more than 50% of the traffic volume from iOS
and Android devices in the mobUser dataset. We also ob-
serve that unmapped media served from CDNs and others
hosts comprises less than 5% of the traffic volume for the
iOS and Android devices. We also observe that the Host
field is more useful to classify Android traffic compared to
iOS traffic, which concurs with what we observed during our
controlled experiments.

To summarize, by using a combination of User-Agent and
Host we were able to classify more than 92% of the iOS and
Android traffic by flows and bytes.

3.4.2 SSL Traffic Mapping without Decryption
SSL flows provide limited information in plaintext to iden-

tify apps. For the traces captured during our controlled ex-
periments, we use SSL bumping to map HTTP flows us-
ing the techniques described in the previous section. How-
ever, we did not perform SSL bumping for the devices in the
mobUser dataset, so we now describe how to map SSL flows
without decryption.
Overview of mapping technique. Using port numbers, we
observe that more than 98% of SSL flows in our controlled
experiments were due to HTTPS, the rest of the flows were
due to email, instant messaging, and OS notification ser-
vices. We therefore focus our attention on identifying the
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App/Org iOS Traffic Android Traffic
Bytes Flows Bytes Flows
(%) (%) (%) (%)

Apps 28.25 48.79 47.74 40.97
Google Services 36.32 17.56 47.31 48.27
Apple Services 25.26 28.26 <0.01 <0.01
Total 89.83 94.61 96.10 89.24

Table 4: Mapping SSL traffic in the mobUser dataset. The
SSL traffic from the iOS and Android devices in the mobUser
dataset is dominated by Google and Apple services.

apps responsible for the HTTPS flows. We use DNS re-
sponses and subsequent SSL handshakes to determine the
hostnames of the remote hosts contacted by mobile devices.
After identifying hostnames, we map them to apps using the
technique described in the previous section.
Identifying hostname using the SSL Handshake. We first
use the common name (CN) field of certificates to identify
the servers that exchanged data using HTTPS. Less than
25% of the HTTPS traffic from iOS and Android contains
the fully qualified domain name (FQDN) in the subject of
the certificate; the rest of the traffic either contains regu-
lar expressions such as *.google.com or is a continua-
tion of a previous SSL session. To further resolve the host-
names, we rely on the Server Name Indication (SNI) used by
SSL flows [15]. Servers that host multiple services use the
SNI to distinguish these services. For example, we observe
an SNI of plus.google.com and s.youtube.com in
two flows that used a certificate with a CN *.google.
com. Using either the certificate or the SNI we identified
the hostname for less than 40% of HTTPS traffic.
Identifying hostname using the DNS messages. For the re-
maining flows we use DNS messages exchanged by the mo-
bile device with its DNS server before starting the HTTPS
flows, a technique similar to DN-Hunter [11]. DN-Hunter
relies on the most recent FQDN that corresponds to the IP
address, however in our controlled experiments we observe
Android and iOS devices use the first entry in DNS response
while resolving hostnames. We therefore use the latest DNS
response that contains the IP address of the Web service in
the first position. In spite of the potential usefulness of DNS
responses, we give a high priority to the SNI and the certifi-
cates because the DNS response differs from these in 9.2%
of the iOS traffic and 5.6% of Android traffic. This differ-
ence is due to caching of DNS responses by the apps.
Mapping results. Table 4 shows our SSL mapping results
on the SSL traffic in the mobUser dataset. We first group
hostnames to the apps and we were able to identify the apps
for more than 40% of the iOS and Android SSL flows. For
flows whose hostnames are ambiguous, we group them ac-
cording to organizations. During manual examination of the
results, we observe that Google and Apple to be the two main
organizations that contributed to the majority of the flows;
we label these flows as Google Services and Apple Services.

In Table 4, we observe that 61.5% of iOS and 47.3% of
Android traffic (by bytes) is respectively to Google and Ap-

ple servers where the hostname does not contain signatures
of the app. This share does not include the traffic to Google
and Apple servers that we classified as apps. For exam-
ple, flows to mail.google.com were classified as GMail
and are placed in the category apps, while flows to www.
googleapis.com is categorized as Google Services. Google
services and Apple services are therefore the largest sources
of SSL traffic in our mobUser dataset.

In summary, using the certificates, SNI, and DNS mes-
sages, we were able to identify the hostname of the remote
hosts for more than 89% of the SSL flows. We observe that
Google and Apple are the dominant sources of SSL traffic
for the Android and iOS devices in the mobUser dataset.

3.4.3 Summary
We use the a combination of User-Agent and Host field to

identify apps responsible for HTTP flows. On applying our
technique to the mobUser dataset, we were able to classify
more than 92% of the iOS and Android traffic by flows and
bytes. We observe that the User-Agent field is more effective
to identify HTTP flows from iOS devices compared to An-
droid devices. We speculate that this behavior is because of
the strict coding practices mandated by Apple while packag-
ing iOS apps [3].

We use certificates, SNI, and DNS messages to map SSL
flows, and we were able to classify more than 90% of SSL
traffic in the mobUser dataset using our classification tech-
nique. To the best of our knowledge, we are the first to study
the effectiveness of these fields in classifying SSL flows from
mobile devices.

4. APPLICATION: MOBILE PRIVACY
REVELATIONS

Privacy has rapidly become a critical issue for user inter-
actions with Internet services, particularly in mobile envi-
ronment where location, contact information and other PII
are readily available. While the problem is well known [21,
28, 34], previous work lacks a general way to identify leaks
using network flows alone, and they provide no portable way
to block those activities. In this section, we use Meddle to
identify and block these leaks. First, we describe ReCon, a
tool that allows users to visualize and block privacy-invasive
connections. Then we describe how we populate this tool
with information about privacy leaks, using controlled ex-
periments to identify how PII is being leaked by apps both
in plaintext and over secure channels.

4.1 Revealing and Controlling PII Leaks
ReCon is a Meddle application for visualizing how users

are being tracked as they use their devices, and for blocking
unwanted connections. It provides a visual interface similar
to Mozilla Collusion [23]; instead of visualizing only web-
sites, our tool shows apps and the third party sites (trackers)
they contact. We identify trackers using a publicly available
database of tracker domains [1]; we augment this list with
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(a) Default view. (b) View showing tracking by
Scorecard Research.

Figure 2: Screen captures of the ReCon tool, allowing
users to visualize how they are being tracked by apps, and
install custom filters by clicking on links to “remove” them.

the domains that leaked PII during our controlled experi-
ments, discussed later in this section, and recent research
on mobile ads [20, 21]. Figure 2 shows screen captures of
our tool, with the default view of trackers contacted by apps
(left) and how hovering/tapping on a tracker reveals the apps
contacting the tracker (right). Similarly, hovering/tapping on
an app highlights all the trackers contacted by the app.

In addition to revealing privacy leaks, ReCon allows users
to block them. Specifically, users can click/tap on a link
to “destroy” it – installing a custom (device specific) filter
for the corresponding tracker. To make this approach prac-
tical, we are developing an interface to crowdsource block
lists, much like how Web browser ad-blocking filters are
maintained and distributed. A demo of our tool is located
at http://goo.gl/pU689F.

4.2 PII Leaked from Popular Apps
We use the traffic traces from our controlled experiments

to identify how apps leak PII. For our controlled experi-
ments, we created dummy user accounts with fake contact
information (see §3.1.1). Our goal is to detect if any PII
stored on the device is leaked over HTTP/S. For our anal-
ysis we focus on the email address, location, username and
password used during authentication, device ID, contact in-
formation, and the IMEI number. Some of this information
is required for normal app operation; however, such infor-
mation should never travel across the network in plaintext.
PII leaks in the clear. Table 5 presents PII leaked by An-
droid and iOS apps. The IMEI, a unique identifier tied to
a mobile device, and the Android ID (tied an Android in-
stallation) are most frequently leaked PII by Android apps.
These can be used to track and correlate a user’s behavior
across Web services. Table 5 shows that other information
like contacts, emails, and passwords are also leaked in the
clear. The email address used to sign up for the services was
leaked in the clear by 13 iOS and 3 Android apps from our
set of popular apps. While only one Android app (belong-
ing to the Photography category) leaked a password in the
clear, we were surprised to learn that six of the most popu-
lar iOS apps send user credentials in the clear, including the

password.
Particularly disconcerting is our observation that an app

in the Medicine category – which the provider claims has
“1 million active members of which 50% are US physicians”
– sends the user’s name, email, password, and zip code in
the clear. Given US physicians have access to sensitive data
like medical records, we believe it is critical for this app to
protect user credentials (which are often used for multiple
services). Following responsible disclosure, we will notify
app authors of these sensitive privacy leaks.
PII leaked from same apps on different OSes. We ob-
served that the information leaked by an app depends on the
OS. Of the top hundred apps for iOS and Android, 26 apps
are available on both iOS and Android. Of these 26 apps, 17
apps leaked PII on at least one OS: 12 apps leaked PIIs only
on Android, 2 apps leaked PII only on iOS, while only one
app had the same data leakage in both OSes. Of the remain-
ing two apps that leaked PII, one app leaked the android ID
and IMEI in Android and username in iOS, while the other
app leaked the Android ID in Android and location in iOS.
The difference in the PII leaks is primarily due to the differ-
ent privileges that the underlying OS provides these apps.
PII leaked over SSL. During our experiments, we observed
that PII is also sent over encrypted channels. We observe that
two of the top 5 sites that receive PII over SSL are trackers.
Our observations highlight the limitations of current mobile
OSes with respect to controlling access to PII via app per-
missions. In particular, it is unlikely that users are made
aware that they are granting access to PII for tracker libraries
embedded in an app that serves a different purpose. This
problem is pervasive: of the 77 sites that received some PII
in the clear or over SSL during our controlled experiments,
35 sites were third party trackers.

We note that our observations are a conservative estimate
of PII leakage because we cannot detect PII leakage using
obfuscation (e.g., via hashing). Regardless, our study shows
that a significant PII leaks are visible from Meddle.

4.3 PII Leaked by Malware
Mobile malware is an increasingly important threat in mo-

bile systems. With Meddle, we can monitor and detect any
malware activity over IP but not circuit switched activity
such as sending SMS or making phone calls. This section
focuses on PII leaked by malware; we also discuss how we
can our results and ReCon to provide malware blocking.

Meddle gives us two opportunities to detect and block
malware activity over IP. First, we can detect the app bi-
nary being downloaded via a hash and block that transfer if
it is identified as malware. Note that, Meddle can compute
hashes only if the app binary is downloaded in the clear and
not over a secure channel (unless SSL bumping is enabled).
Second, we can use the techniques discussed in §4.2 to iden-
tify and block PII leaks by malware.

To understand malware network behavior, we use a dataset
consisting of 111 confirmed malicious Android APKs gath-
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Store Platform # Apps Email Location Name Password Device ID Contacts IMEI
App Store iPhone 209 13 (6.2%) 20 (9.5%) 4 (1.9%) 6 (2.87%) 4 (1.9%) 0 (0%) 0 (0%)
Google Play Android 100 3 (3%) 10 (10%) 2 (2%) 1 (1%) 21 (21%) 0 (0%) 13 (13%)
Third Party Android 732 3 (0.4%) 57 (7.8%) 3 (0.4%) 0 (0%) 85 (11.6%) 6 (0.8%) 39 (5.3%)
Malware Android 111 1(0.9%) 20 (18.01%) 0 (0.0%) 0 (0%) 20 (18.01%) 9 (8.1%) 68 (61.2%)

Table 5: Summary of PII leaked in plaintext (HTTP) by Android and iPhone apps. The popular iOS apps tend to leak the
location information in the clear while Android apps leak the IMEI number and Android ID in the clear.

Domain Name # Malware App Store
cooguo.com 19 X
umeng.com 16 -
wapx.cn 11 X
flurry.com 9 -
veegao.com 9 -

Table 6: Top 5 sites that receive PII, and the number of
malwares sending them the PII. Two of the top 5 sites that
receive PII are third-party app stores.

ered by the Andrubis project [10] in September, 2013. We
use the approach in §3.1.1 to conduct controlled experiments
on the malware. The malware consists of 46 families rang-
ing from backdoors to spyware. Of the 111 apps, 99 (89%)
apps generated network traffic; 37 of the 111 apps targeted
earlier versions (below 4.0) of the Android OS and thus did
not work to their full potential during our experiments.
Signature-based detection is insufficient. First, we deter-
mine whether existing malware hash registries contain sig-
natures for the malicious apps in our dataset. Even in De-
cember 2013, 3 months after the malware was identified by
Andrubis, we find that only 9 (8.1%) apps were correctly
identified as malware by Cymru’s Malware Hash Registry
that uses 30 anti-virus software packages [8]; 7 of these 9
apps generated network traffic.
PII leaks by malware. Of the 99 apps generating network
traffic, we were able to identify PII leaks from 74 apps. Sim-
ilar to the Android apps previously examined, we observe
that the IMEI, and Android ID are most commonly leaked
PII. Of the remaining 25 apps that generated traffic and did
not leak PII over HTTP and HTTPs, 17 tried to contact a re-
mote host that was down (did not respond to a TCP SYN) or
sent encoded data over HTTP and HTTPs, while 8 apps are
known to exploit previous versions of Android.

In Table 6, we present the top 5 sites that receive the PII
leaked when we tested the malware. We observe that 2 of the
top 5 site are stores from which Android apps can be down-
loaded, and the most frequently contacted store, cooguo.com,
was known to host malware software [5].
Blocking malware. We observe that malware apps con-
nect to different sites, app stores and use different ports from
most non-malicious traffic. For known malware stores, we
can simply block access to the site via Meddle. For other
types of malware, we are investigating the effectiveness of
behavioral filtering and crowdsourcing. We can use a classi-
fier to determine app activity that is likely malware, then ask
users to validate our inference via Recon.

4.4 PII Leaked in User Study

Tracker Number of devices tracked
Total iOS Android

doubleclick.net 26 (all) 15 (all) 11 (all)
google-analytics.com 26 (all) 15 (all) 11 (all)
googlesyndication.com 22 12 10
admob.com 21 11 10
scorecardresearch.com 21 11 10

Table 7: The top 5 trackers that were contacted by the
devices in our dataset. All 26 devices in mobUser contacted
doubleclick.net and google-analytics.com.

We now analyze the PII leaks in the mobUser dataset us-
ing the app classification from §3.4. Note that we do not use
SSL bumping on this data for privacy reasons.
Location leaks. We observe that a bus service app (One Bus
Away), the app that manages the iOS homescreen (Spring-
Board), and the weather apps (TWC, Weather, and Hurri-
cane) were responsible for more 78% of the flows that sent
location in the clear. Other apps that do not require loca-
tion, such as YouTube, Epicurious and EditorsChoice, also
leaked the device location. Further, SpringBoard leaked lo-
cation information for all 11 iOS devices in the mobUser
dataset, a maximum of 14 leaks per day was observed for
one device, sufficient to expose a user’s daily movements to
anyone tapping Internet connections [18].
Unique ID leaks. The device ID and IMEI are frequently
leaked in the clear, and as in the case of controlled experi-
ments, trackers are the most popular destination for the IMEI
leaks. Among the 16 sites that received these unique IDs in
the clear, 10 are trackers; the rest includes sites for games,
news, and manufacturer updates.

In Table 7, we present the top 5 trackers ordered according
to the number of devices in the mobUser dataset that con-
tacted them. We observe that all the devices in the mobUser
dataset contacted doubleclick.com, an ad site, and google-
analytics.com, an analytics site.

To summarize, we perform controlled experiments to iden-
tify and compare PII leaks in Android and iOS. We observe
that trackers receive PIIs over HTTP and also over SSL,
and that the most popular trackers were able to track all the
users in our mobUser dataset. We build on our observations
and allow users of Meddle to visualize and block traffic to
trackers, an incentive for users to participate in our on going
study.

5. APPLICATION:
REVEALING ISP BEHAVIOR

This section describes how we build two applications atop
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Figure 3: Screen capture of content injection by a Chi-
nese ISP in November, 2013. The highlighted region at the
bottom should be an advertisement from a US company.

Meddle to reveal the policies ISPs apply to mobile traffic
traversing their networks. Previous work addressed this prob-
lem in fixed-line networks; to the best of our knowledge we
are the first to provide this functionality for mobile systems.

5.1 Detecting Content Manipulation
ISPs, middleboxes and client software are known to change

Web page content for a variety of reasons including perfor-
mance optimization and security. In some cases, a third party
can change a page for selfish reasons, e.g., to insert ads that
generate revenue for that party. Figure 3 depicts an example
of content injection in China, where a banner ad is replaced
by information about the local airport.

This problem of Web interference was first highlighted by
Reis et al. [27]. The authors demonstrated that although a
small percent of users were affected by in-flight changes,
those changes tend to introduce vulnerabilities including cross-
site scripting (XSS) attacks. They proposed and deployed
Web Tripwires, Javascript code to detect in-flight page changes.
The main limitation of Web Tripwires is that it requires each
Web site to modify their content to include a tripwire.

In Meddle, we extended tripwires to alleviate this limita-
tion. Namely, we use the HTTP proxy present in Meddle to
inject a tripwire on any page without requiring support from
Web site developers – an approach we call a Web Tripnet.
Implementation. With Meddle all traffic is tunneled, thereby
preventing ISPs from modifying pages. To identify ISP con-
tent manipulation (e.g., for public policy reasons and for
users not protected by Meddle), we provide the Tripnet as
an opt-in feature. Because this entails two fetches of every
Web page, we also support two modes: always-on and low-
rate random trials, where we insert tripwires for some small
fraction of their visited sites.

The Tripnet works as follows (Fig. 4). A client requests
a Web page through the Meddle VPN tunnel. This request
is forwarded to the destination server. The response returns
to the Meddle server, where a transparent proxy injects the
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Figure 4: Overview of the Web Tripnet. A Web page loads
through the VPN tunnel, where a meddlebox inserts a Web
tripwire. The tripwire causes the browser to reload the Web
page using the address of a transparent proxy server that is
accessed using an unencrypted connection. After the proxied
version of the page is loaded, the browser (or a meddlebox)
compare the two pages to identify manipulation.

tripwire code.2 The tripwire-enabled response is forwarded
to the client, which executes the Javascript at page load time.

The tripwire code contains information about the page
content prior to traversing the ISP. When executed, the code
fetches the page again to compare with the (known) unmod-
ified page content. To ensure that this fetch does not traverse
the VPN connection, we use a pigeonhole domain whose
traffic traverses an untunneled interface. For example, if the
original request was for www.facebook.com, we send
the request to tripnet.meddle.mobi/www.facebook.
com, where we run a Web proxy.

When the request arrives at our proxy server, we could for-
ward the request to the original target. In practice, however,
doing so would return different content due to the highly dy-
namic nature of most Web content. Instead, we cache Web
pages at the tripnet-injecting server and co-locate our Web
proxy there. Thus we return exactly the same Web page that
was received over the tunneled connection. Any difference
in page content can only be due to ISP behavior.

Note that this does not address cases where modification
is based on destination IP or when the entire page is replaced
(e.g., a block page). To detect this, we can set the tripwire to
fetch the page from the origin server at the cost of imprecise
identification due to dynamic content.
Content modification/replacement. In addition to detect-
ing changes to text content in Web pages, we use our con-
trolled experiments to investigate whether ISPs are manip-
ulating media content, e.g., downsampling high-resolution
images to reduce bandwidth consumption from mobile de-
vices. For this experiment, we augment our Tripnet exper-
iments with the result of wget results from the mobile de-
vice and the proxy server. Note that this experiment requires
2We recognize the irony of injecting content to detect content in-
jection, but this is done only with user consent.
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an app or tethered laptop to collect the Web media objects
fetched over the mobile network.
Sites and ISPs tested. We conducted controlled experi-
ments using our Tripnet architecture, using the top 100 Web
sites according to Alexa. We tested using AT&T, T-Mobile
and Verizon in the US, and Sosh in France. Many sites cus-
tomize content according to User-Agent strings, so we spoof
them as coming from iOS, Android and desktop clients.
Content modification/injection. We found no cases of page
modifications in the networks tested. In addition the exam-
ple in Fig. 3, we found whole-page replacement in the case
of T-Mobile. A service called Web Guard replaced the page
for an adult Web site with a block page. Further, our tests
allowed us to identify differences in Web content not due an
ISP. Specifically, we observe that Wordpress hosts a jquery.js
file using the Edgecast CDN, and the file contents differ de-
pending on where the client is located. When accessed di-
rectly from mobile devices the script size is 256 KB; when
accessed from the proxy server the script is 93 KB. The dif-
ference in size is because the latter uses a minified version;
it is unclear why this is not served to all the networks.

5.2 Detecting Service Differentiation
In this section, we describe how we use Meddle to detect

service differentiation in ISPs. We define service differenti-
ation as any attempt to change the performance of network
traffic traversing an ISP’s boundaries. ISPs may implement
differentiation policies for a number of reasons, including
load balancing, bandwidth management or business reasons.
Specifically, we focus on detecting whether certain types of
network traffic receive better (or worse) performance.

Previous work [14, 33, 38] explored this problem in lim-
ited environments. Glasnost focused on BitTorrent in the
desktop/laptop environment, and lacked the ability to con-
duct controlled experiments to provide strong evidence of
differentiation. NetDiff covered a wide range of passively
gathered traffic from a large ISP but likewise did not support
targeted, controlled experiments. We now describe how we
address these limitations with Mobile Replay.
Assumptions. We assume that ISPs will differentiate traf-
fic based on hostname, IP addresses, ports, total number of
connections, payload signatures, total bandwidth and time of
day. Our system can diagnose nearly all of these cases.
Overview. Mobile Replay identifies service differentiation
using two key components. First, it tests for differentiation
by replaying real network traces generated from user inter-
actions with apps. Meddle facilitates capturing this informa-
tion, and we develop new strategies for replaying arbitrary
app traces. Second, Mobile Replay exploits the Meddle VPN
to conduct controlled experiments. By alternately replaying
traffic over tunneled and untunneled connections multiple
times in rapid succession, we control for factors that ISPs
may use to differentiate traffic.

A key challenge is how to capture and replay the salient
features of application traffic such that it will be subject to
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Figure 5: Plot of record (solid) and and replay (dashed)
from Netflix activity. The x-axis is time and y-axis is the
total number of bytes transferred to that point. The figure
shows that our replay closely matches the recorded trace.

differentiation from middleboxes. To this end, we design a
system that captures traffic generated by users’ devices (via
Meddle) and replays those flows from a replay server.

The replay system consists of a client running on the mo-
bile device and a replay server. The client and server co-
ordinate to replay the original flows to reproduces packet
timings, sequence of bytes, ports and source IPs. Since our
replay is limited to using our own replay servers, we cannot
detect differentiation based on arbitrary destination IPs.

Another key challenge is how to establish ground truth as
to whether the ISP is differentiating service for replay traf-
fic. To address this, we exploit the VPN connection that
Meddle provides as follows. When the VPN is enabled, the
ISP cannot inspect flow contents and thus cannot differen-
tiate based on the above factors except total bandwidth and
time of day. We then compare this performance to the case
when we send traffic untunneled. Using multiple successive
trials of tunneled and untunneled replay experiments, we can
determine the noise inherent in performance metrics in each
type of experiment (tunneled vs not tunneled), then identify
cases where there are statistically significant differences be-
tween them – indicating differentiation.
Feasibility. Figure 5 uses a sequence-number diagram to
compare the behavior of original traces to those generated
by our replay system, in an environment where we know dif-
ferentiation is not happening. By preserving packet ordering
and timing, our system produces very similar results.

Of course, a variety of factors can differ between record
and replay, including network conditions and access tech-
nology. In particular, apps may change their behavior in re-
sponse to network technology and available bandwidth. For
example, the YouTube app did not allow HD video content
for our test Android device over T-Mobile. In such cases,
we must ensure that we replay traffic that was originally cap-
tured over similar network conditions. In our experiments,
YouTube was the only app that exhibited such behavior.
Methodology. We detect differentiation according to the
following metrics. First, we compute checksums to verify
that the bytes sent/received at each endpoint during the re-
play are exactly the same as the original trace. If not, we
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Network Coverage Portability Deployment model Meas. Type Control?
Large ISP studies [19, 34] Single carrier All OSes Instrument cell infrastructure Passive No
WiFi study [13] Single WiFi network All OSes Instrument WiFi network Passive No
PhoneLab [12]/TaintDroid [17] Multiple networks Android Install custom OS Active/Passive Yes
MobiPerf [35]/SpeedTest [30] Multiple networks Android Install App Active Yes
Meddle Any network Most OSes VPN configuration Active/Passive Yes

Table 8: Comparison of related work. Meddle is the first approach to provide visibility and control over network traffic for
all access networks and most device OSes.

flag a case of content manipulation/blocking. Second, we
compute summary statistics on throughput and loss. Unlike
manipulation/blocking, there are confounding factors other
than differentiation that may causes changes in these statis-
tics between the record and replay.

To address this issue, we run multiple replay trials (10 to-
tal), alternating between using a VPN connection (RT ) and
an untunneled one (RU ). By computing statistics over multi-
ple trials of one category (RT or RU ) we can quantify natural
variations in performance that are not a result of differenti-
ation. Having computed the variance over RT and RU , we
can compare the summary statistics (mean/median) of RT

and RU and use the variance in each category to determine
if the differences are statistically significant.

Note that ISPs may apply differentiation to all VPN traf-
fic, e.g., by throttling. To detect this, we group all RT sam-
ples and compare them to all RU samples across all applica-
tions and use the analysis described above.
Results from wide-area testing. We used Mobile Replay
to investigate service differentiation in AT&T, Verizon, and
T-Mobile, using the following apps: YouTube (YT), Netflix
(NF), Spotify (S) and Dropbox (DB). We picked these apps
because they are popular and bandwidth-intensive, and thus
are potential candidates for differentiation due to traffic en-
gineering. We interact with these apps for about one minute
during the record phase, then replay the traces in each mea-
sured network. Note that these apps are intended to demon-
strate how our approach works; a complete treatment of ser-
vice differentiation is beyond the scope of this paper.

Table 9 shows the average throughput and loss (along with
standard deviations) in Verizon’s 3G network in Boston. Tests
with AT&T and T-Mobile were similar. The key take-away
is that we observe only small differences in performance,
and they are not statistically significant – indicating no ser-
vice differentiation for these apps. The standard deviations
also indicate that detecting differentiation in throughput can
be difficult for small changes. On the other hand, small
changes in packet loss should be easy to detect.

6. RELATED WORK
The network behavior of mobile systems has implications

for battery life, data-plan consumption, privacy, security and
performance, among others. When attempting to character-
ize this behavior, researchers face a number of trade-offs:
compromising network coverage (limiting the number and
type of ISPs measured), portability (limiting the device OSes)

App Throughput (KB/s) Loss (%)
No VPN VPN No VPN VPN

(avg, stdev) (avg, stdev) (avg, stdev) (avg, stdev)
YT(DL) (103.74, 31.16) (99.85, 35) (0.81, 0.06) (0.86, 0.13)
YT(UL) (114.52, 6.05) (117.37, 8.78) (0.03, 0.01) (0.05, 0.01)
DB(DL) (155.09, 32.42) (148.1, 44.95) (0.79, 0.31) (0.88, 0.38)
DB(UL) (115.07, 7.31) (120.25, 5.85) (0.07, 0.02) (0.09, 0.01)
SPTFY (123.91, 40.19) (127.16, 45.96) (0.83, 0.08) (0.73, 0.07)
NFLX (122.81, 28.42) (132.26, 33.55) (0.97, 0.03) (0.99, 0.15)

Table 9: Average and standard deviation for 4 apps (YT:
YouTube, DB: Dropbox, SPTFY: Spotify, NFLX: Netflix;
UL=Upload, DL=Download) on Verizon. The differences
in performance are within the noise, indicating no service
differentiation.

and/or deployability (limiting subscriber coverage). Meddle
compromises none of these, enabling visibility and control
of network traffic across carriers, devices and access tech-
nologies. Table 8 puts our approach in context with related
approaches regarding network behavior of mobile systems.

Traces from mobile devices can inform a number of inter-
esting analyses. Previous work uses custom OSes to investi-
gate how devices waste energy [24], network bandwidth and
leak private information [17,20]. Similarly, AppInsight [26]
and PiOS [16] can inform app performance through binary
instrumentation and/or static analysis. In this work, we ex-
plore the opportunity to use network traces alone to reveal
these cases without requiring any OS or app modifications.

Network traces from inside carrier networks provide a de-
tailed view for large numbers of subscribers. For exam-
ple, Vallina-Rodriguez et al. [34] use this approach to char-
acterize performance and the impact of advertising. Ger-
ber et al. [19] similarly use this approach to estimate net-
work performance for mobile devices. Similar to these ap-
proaches, Meddle provides continuous passive monitoring of
mobile network traffic; however, Meddle is the first to do so
across all networks to which a device connects.

Active measurements [30,35] capture network topologies
and instantaneous performance at the cost of additional, syn-
thetic traffic for probing. In contrast, Meddle uses passive
measurements to characterize the traffic that devices natu-
rally generate. PhoneLab [12] provides a mobile experimen-
tation platform with low-level OS and device access; how-
ever, it does not run on unmodified device operating sys-
tems. Meddle does not require OS modification — facilitat-
ing large-scale, global deployment.

7. CONCLUSION
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We described Meddle, a platform for gaining visibility
and control over network flows from mobile devices. Med-
dle presents new opportunities for researchers to experiment
with middlebox services on Internet traffic generated by mo-
bile users, and provides a variety of clear incentives for users
to participate in the system. We demonstrated the effec-
tiveness of our approach based on controlled experiments,
a small user study and case studies of applications built atop
Meddle. Our ongoing work focuses on inviting more users
to participate in our study (including in developing regions
such as China and India), developing additional meddlebox
services and opening the platform to other researchers.
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